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ABSTRACT

The formulation of a macroscopic reaction mechanism, the
sequence of elementary reaction steps by which reactants are
turned into products, is difficult. We review several new methods
of determining the causal connectivity of chemical species, the
reaction pathway (the sequence of chemical species), and the
reaction mechanisms of complex reaction systems from prescribed
measurements and theories.

[. Introduction

Chemical and biochemical reaction systems may have
many species: reactants, products, intermediates, cata-
lysts, and positive and negative effectors on the catalysts.
These species may be involved in many elementary
reaction steps, each of which details the particular reac-
tants and products involved in a single reactive collision.
The sum total of these elementary steps constitutes the
reaction mechanism of the given system by which the
initial reactants are turned into final products.

The goal of establishing reaction mechanisms has long
been sought in chemistry. For more than 100 years this
goal was approached by (1) identifying individual chemical
species, either by physical or chemical means; (2) isolating
the species contributing to one elementary step in the
mechanism of that system; (3) determining the stoichi-
ometry of that step; and (4) determining the kinetics of
that step. This has been an arduous task, in part due to
the difficulties, until recent years, of measuring the
concentrations of more than a few species as a function
of time. The use of radioactive tracers has helped signifi-
cantly. When these tasks were done, then began the
guessing of the reaction mechanism, followed by writing
the kinetic equations for the hypothesized mechanism and
deducing kinetic predictions to be compared with avail-
able experiments. If the predictions fit the experiments,
the guessed mechanism is possible but not necessary.
There has not existed a prescribed method of deducing a
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reaction mechanism from measurements; there are a few
clues for small systems (few species),! but no more.

This Account describes some new approaches to the
deduction, not guessing, of reaction mechanisms, reaction
pathways, which contain less information, and causal
connectivites of the chemical species from specially
designed experiments and necessary theories for their
interpretation. (For several such theoretical studies of
genetic networks, restricted mostly to Boolian networks,
see refs 2—4.) The deduction of a mechanism from
experiments still leads only to a sufficient mechanism, not
a necessary or unique one, in that more measurements
may lead to changes in the mechanism. The advantage
of our approaches lies in prescribing definite procedures
for obtaining reaction mechanisms and pathways and
their predictions: if they check with experiments they are
sufficient, but not necessary or unique.

Compare the determination of the long-practiced art
of guessing reaction mechanisms as described above with
the determination of the logic functions of an electronic
device. An electronic engineer imposes electronic inputs
(voltages, currents) and measures outputs of the entire
system; this leads to the construction of a truth table from
which the functions of the device, and at least some of its
components, may be deduced. A chemist would take a
sledgehammer and knock the device to pieces, look for
circuit elements such as transistors, capacitors, etc., and
from that information try to guess the functions of the
device (overstated, but indicative).

We learned (slowly) to follow the example of the
analysis of electronic devices and apply it to chemical
kinetics.® First we showed the possibility of constructing
logic devices by means of macroscopic kinetics. For
example, if and only if the concentrations of species 1 and
2 are high, then and only then is the concentration of
species 3 high; the mechanism acts as a logic AND gate.
We also constructed on paper various logic gates and with
these designed a sequential computer called a universal
Turing machine, such as a pocket computer and many
much larger machines. We then constructed a parallel
computer, first on paper, and then we used chemical
bistable systems to carry out the computations of a pattern
recognition experiment, the first by implementation of a
computation by macroscopic chemical kinetics.®

Next we came to the question if chemical, or more
pertinently biochemical, systems can carry out computa-
tions. We answered that question in the affirmative by
analyzing a large part of the glycolytic pathway, including
the tricarboxylic acid cycle, to show that the bifurcation
from fructose-6-phosphate to 1,6- and 2,6-fructose bi-
phosphates acts as a logic gate that controls the important
switch from glycolysis to gluconeogenesis. This gate is not
Boolian, with a sharp transition from one path to its
effective reverse, which would serve poorly, but a fuzzy
logic gate that changes slowly from one path to the other
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FIGURE 1. An unbranched chain of reversible first-order reactions.

as it responds to multiple inputs of many effectors that
control the gate.”

If computational functions are indeed built into bio-
chemical reaction pathways and mechanisms, then new
approaches with suggestions from circuit theory, system
analysis, multivariate statistics, and others may be avail-
able for the analysis of chemical kinetic systems as a
whole, with retention of all interactions among the spe-
cies. Keep the system together and measure the concen-
trations of as many species as possible. With advances in
several fields of analytic instrumentation such as a variety
of mass spectrometers, capillary electrophoresis, high-
pressure liquid chromotography, and others, the mea-
surement of the concentrations of many, if not all, species
at a time and as a function of time has become possible.
Hence it is timely to consider the design of suitable
experiments and appropriate theories for the analysis of
complex reaction systems in a way such that we may
deduce from available experiments, rather than guess,
reaction pathways and mechanisms. If species are not
detected with the measurements available, for example,
short-lived species, then in general little can be said.
Sometimes chemical knowledge may indicate a missing
species; sometimes inferences about species not measured
may be made.

We begin with our latest approach, pulse change of
concentrations, which is conceptually the simplest.

[I. Determination of Causal Connectivities of
Species in Reaction Networks (Mechanisms)

A. Introduction and Theory.? Consider the simple case
of a sequence of first-order reactions as shown in Figure
1. Let this isothermal system be in a stationary state, not
at equilibrium, where the concentrations are constant but
there is a steady flux, say from left to right; or at
equilibrium where there is zero flux. The stationary state
not at equibrium is maintained by a balance of mass flux
into the system (ko) and out of the system (kg). Now pulse
(increase) the concentration of one of the species by an
arbitrary amount. The theoretical analysis of the pulse
methods is given in ref 8, and an experimental test of that
method is presented in ref 9. (For studies of reaction
mechanisms by pulse methods restricted to small pulses,
see refs 10—12 for chemical systems. A theoretical study
of functional, not molecular interactions, in signaling and
gene networks is presented in ref 13.) As the concentration
of one species is changed, other species respond with
changes of concentrations. For a pulse in species X; in
Figure 1, the responses of the other species are shown in
Figure 2. Hence the order of the responses yields the
causal (direct) connectivities of the species in the reaction
mechanism.

If the system in Figure 1 is in a nonequilibrium
stationary state, then there is a net flux, say from left to
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FIGURE 2. Plots of the relative deviation in concentration from the
stationary state versus time for all the species of the mechanism in
Figure 1. The maxima are ordered according to the number of
reaction steps separating that species from the initially perturbed
species.

right. If we pulse some other species, say Xs, then that
pulse will propagate downhill in Gibbs free energy, to the
right strongly, but uphill to the left weakly. If the reverse
rate coefficients k_; etc. are all set to zero, then the
reaction is irreversible, and no pulse of any species
propagates to the left.

We see in Figure 2 that a maximum occurs in the
relative concentration of any species between the curves
for the preceding and succeeding species, a result which
is predicted by the solutions of the kinetic equations of
system 1. Several rules often hold for systems of this
type: (1) The time of (appearance of) an extremum
increases (and its amplitude decreases) as the number of
reaction steps separating that species from the initially
perturbed species increases, unless some species act as
effectors in distant reactions. (2) Conversely, the initial
curve of the relative concentration changes of a species
with time approaches the time axis (closer) as the number
of reaction steps separating that species from the initially
perturbed species increases. (3) Species that are directly
connected through reactions to the initially perturbed
species exhibit nonzero initial slopes. (4) Species that are
not directly connected through reactions to the initially
perturbed species exhibit zero initial slopes. (5) All re-
sponses are positive deviations from the stationary state
unless there is a feedback, feedforward, or higher order
(>1) kinetic step. (6) For short times, before the exit of
material from the pulse to the surroundings of system,
the concentration change of the pulse is conserved: the
sum of deviations of concentrations (weighted by stoi-
chiometric coefficients) is constant and equal to the
change in concentration of the initial pulse. This property
is useful in determining that all species produced from
the pulse through reactions have been detected, and can
help in determining correct stoichiometric coefficients.®

If tracers (radioactive, fluorescent,etc.) are used, such
that the concentration of the sum of the labeled and
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FIGURE 3. A linear chain of coupled first- and second-order
reactions.
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FIGURE 4. Plots of relative deviation in concentration versus time
for species of the mechanism in Figure 3. A pulse perturbation of
the concentration of species X; results in the responses shown.

unlabeled compound is constant, then the response to a
tracer perturbation is always first order, even if the kinetics
of the system is nonlinear.

An example of mixed first- and second-order irrevers-
ible reactions is shown in Figure 3. These are also
respectively unimolecular and bimolecular reactions if
each step is an elementary step, which need not be the
case. For example, a first-order reaction may describe an
enzymatic (Michaelis—Menten) mechanism at high sub-
strate concentration. If X; is pulsed in this system, then
the responses are as shown in Figure 4. The occurrence
of the maxima of the responses is ordered in time
according to the distances from the pulsed species in the
mechanism. There are approximate relations among the
maximum responses in the relative concentrations, la-
beled uj;

uf ~ (M, u; uf~2uy uix (M)us U~ 2ug (1)

which can be derived from the deterministic kinetic
equations for this system for small pulses. The coefficients
give the stoichiometric coefficient of 2 in front of X;, Xs,
and Xg.

Complex reactions may occur also in branching or
coalescing chains (see Figure 5); in cycles; with feedfor-
ward and feedback reactions; and any combinations
thereof. An illustration of feedback is given in Figure 6. If
species X5 is pulsed in that mechanism, and X; increases
the rate v; as indicated, then the concentration Xz will
decrease initially from its value in the stationary state and
then return to that value.

In ref 8 we work out an example of the application of
the pulse method to a simple model of glycolysis by

X1 perturbed
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FIGURE 5. Chemical reaction mechanism for converging chains of
irreversible first-order reactions. The rates of production of species
Xi and Xg are held constant at 0.1 and 0.5, respectively. [Xj]o denotes
the stationary-state concentration of species X;.
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FIGURE 6. lllustration of positive feedback in a linear chain of first-
order reactions.
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FIGURE 7. Experimental test system. Abbreviations: G6P, glucose
6-phosphate; F6P, fructose 6-phosphate; F1,6BP, fructose 1,6-
bisphosphate; DHAP, dihydroxyacetone 3-phosphate; GAP, glycer-
aldehydes 3-phosphate; G3P, glycerol 3-phosphoglycerate; CSTR,
continuous-flow stirred-tank reactor.

solving the kinetic equations numerically. We thus gener-
ate response curves which are simple to interpret for the
deduction of the connectivity and reaction pathway.
Rather than discuss this exercise, we turn to an experi-
mental test of the pulse method.

B. Experimental Test of the Pulse Method. We tested®
the pulse method for determining reaction systems with
the experimental system shown in Figure 7, which is a
part — the beginning — of glycolysis. This system is stud-
ied in a continuous stirred tank reactor (CSTR), a stirred
vessel with an inflow and outflow. The enzymes in Figure
7 are introduced at an initial time and kept in the vessel
at a determined concentration by a membrane which
blocks their outflow, but not that of the remainder of the
system. When a stationary state has been achieved, which
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FIGURE 8. Responses in relative concentration to a pulse of G6P.
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FIGURE 9. Responses in relative concentration to a pulse of F1,6BP.

takes about 30 min, one of the metabolites is pulsed by
an injection of that species into the inflow. The responses
of six metabolites are measured with capillary electro-
phoresis until the concentrations again return to their
values at the stationary state. The measurements are of
modest precision: typical relative errors were 4% for G6P,
11% for F6P, 15% for F1,6BP, 9% for DHAP, 6% for 3PG,
and 3% for G3P. However, this precision is sufficient for
obtaining substantial information about the reaction
mechanism.

Measurements of the responses in relative concentra-
tion due to a pulse in G6P are shown in Figure 8. The
temporal order of propagation of the pulse is from G6P
to F6P, then DHAP, G3P, and 3PG. The time of appearance
of the maximum response of the first three species is in
that same order. F1,6BP was not measured adequately in
this pulse and is not shown.

Figure 9 shows the responses due to a pulse of F1,6BP.
DHAP follows, and then G3P and 3PG. The uphill species
(in Gibbs free energy), as determined from Figure 7,
respond with low amplitude (the order of G6P and F6P is
the reverse from that expected from Figure 7, but the
precision of the measurements is low at low amplitude).

The response to a pulse of DHAP is interesting (Figure
10). F1,6BP has a substantially higher response than
expected, unless there is a stoichiometric coefficient other
than unity (see Figure 4, the curve for uz; and the
corresponding reaction 2X, — Xz). G3P and 3PG follow
DHAP.

The only response to a pulse of G3P is the one of that
species and DHAP. There are no responses to a pulse of
3PG other than that species. 3PG is therefore at the end
of the line, a branch of the reaction mechanism, with no
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FIGURE 10. Responses in relative concentration to a pulse of DHAP.
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FIGURE 11. Responses in concentration changes to a pulse of
NADH. The dotted line is the sum of the variations of F1,6BP, G3P,
and 3PG.

significant responses of uphill species, but not the same
branch that has G3P in it.

Although we did not measure the concentration of
NADH, we applied a pulse of that species and found the
responses shown in Figure 11. Note the very different
responses of 3PG and G3P, which confirm that these two
species are indeed in different branches. NADH is either
an effector or a reactant which increases G3P, and at the
same time either a reactant or effector that decreases 3PG.
Both G3P and 3PG are connected to DHAP, which shows
no change. The effect of NADH works through DHAP to
F1,6BP which shows a change in concentration. The
dotted line gives the sum of the changes of F1,6BP, G3P,
and 3PG, which is essentially constant.

These experiments lead by deduction from them to the
reaction pathway shown in Figure 12. The first attempt
at that deduction was made by assigning random integers
to the chemical species so as not to be prejudiced in our
deductions from the measurements. We then repeated this
process by using the names of the species, and obtained
the same results. We did the analysis not using common
knowledge such as necessary stoichiometric relations due
to conservation of mass. We did assume that DHAP and
GAP are in equilibrium (quickly attained), which is the
case and which we tested. We were not able to measure
GAP. That PEP is an inhibitor of PFK was found in a
separate experiment.

The main features of the reaction pathway are well
predicted by the pulse method, in particular the bifurca-
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G6P

G3P  NADH 3PG
FIGURE 12. Proposed reaction scheme based on experiments.
Dashed lines with circles indicate that activation (+) or inhibition
(=) may be effected by a metabolite either as a substrate or product,
or as an effector. PEP, phosphoenolpyruvate.

tion of the sequence G6P, F6P, F1,6BP into two branches
of reaction sequences, one ending in G3P and the other
in 3PG. The fast equilibrium of DHAP with GAP (not
measured) places that bifurcation at DHAP rather than
that shown in Figure 7. Much of the reaction mechanism
can be deduced from the reaction pathway.

We believe the pulse method to be relatively simple,
effective, and generally applicable.

[1l. Statistical Construction of Reaction
Mechanism. Correlation Functions from
Measurements of Time Series of
Concentrations

A. Introduction and Theory.* In the last section we
discussed the issue and measurements of the causal
connectivity of species in a reaction mechanism. We now
turn to related concepts, those of the correlation of time
series of reacting species and correlation metric construc-
tion (CMC), and their relations to the reaction mechanism
of the system. Causally connected species are generally
highly correlated; however, highly correlated species may,
but need not be causally directly connected, as for
instance in branched networks or networks with feedback.
The goal of CMC is the determination of reaction path-
ways and mechanisms, the regulatory structure of the
mechanism, and the connectivity of the species from the
measured responses of the species to imposed fluctuations
of some chosen species.

Consider a simple hypothetical reaction network such
as that shown in Figure 13, which is common in bio-
chemical reactions. Let this open system be maintained
in a nonequilibrium stationary state. Perturb the concen-
trations of the arbitrarily chosen species I, and I, randomly
by arbitrary amounts, and let the system relax back toward
the stationary state after each perturbation. Measure
during this relaxation the concentrations of all seven
species as a function of time (the enzymes E; are at
constant concentrations).

The reciprocal of the characteristic frequency of the
random variations of the species I, and I, is of the order
of the longest relaxation time in the system. For given rate

FIGURE 13. Chemical reaction mechanism representing a bio-
chemical NAND gate. All species with asterisks are held constant
by buffering. Lines ending in a circle-enclosed minus sign over an
enzymatic reaction step indicate that the corresponding enzyme is
inhibited (noncompetitively) by the relevant chemical species.
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FIGURE 14. Plot of the calculated concentration time series for all
the time-varying species composing the mechanism in Figure 13.
Only the first two time courses (those for I; and I,) are set by the
experimenter. The concentration of I; and I, are chosen indepen-
dently from a Gaussian distribution with a mean and standard
deviation of 30.0 concentration units.

coefficients for the system in Figure 13, the responses of
the species S; to S; to the imposed fluctuations (perturba-
tions) in I; and |, are shown if Figure 14. Note that this,
as well as most other chemical reaction mechanisms, may
act as frequency filters of various types, and this property
may have applications in biological systems (see ref 15).
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FIGURE 15. Multidimensional scaling analysis obtained from the
correlation functions calculated from the time series of concentra-
tions shown in Figure 14. The scales on the axes give correlation
distances.

From these time series, correlation functions are
formed, for example the correlation of species i and j,

Sij(@) = [xi(1) — X)(x;(t) — X0 )

where x;(t) is the concentration of species i at time t, X; is
the average concentration of that species over time for a
given time series, and 7 is a chosen time interval. Some
representative correlations are shown later. We normalize
these correlations,

Sij(T)
VSii(0)S;(7)

define the maximum of that correlation for any 7z, and
define a distance,

rij(v) = 3

d; = (c; — 2¢; + ¢ = vV2(1.0 —

¢ij = max|r;;(7)l,

)" (@)

If the correlation rj; is large, say the maximum of unity,
then the distance dj; is zero; if there is no correlation, rj
= 0, then dj = 1.41 (an arbitrary number). With these
distances we can carry out a mathematical procedure
called multidimensional scaling analysis to build an
object.** A simple description of this procedure is this:
take a stick and write the number of one of the species
on one end of the stick, and the number of another species
on the other end. The stick is small for large correlations
and larger for smaller correlations. Pick all the ends of
sticks with the number one and place these ends at a
point. Do the same with the number two, and so on for
all the species. You will need a multidimensional space
to accomplish the task of building this object.

Shine a light beam on the object and project its image
on a screen. Rotate the object until its image on the screen
gives you the maximum information about the object. If
all this, or its mathematical equivalent, is done with the
reaction mechanism in Figure 13, then we obtain the
projection in Figure 15. The projection of the multidi-
mensional object constructed from the correlation dis-
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FIGURE 16. The first few reaction steps of glycolysis. Regulatory
interaction: (—) a negative effector, (+) a positive effector. Creat-
ine-P (phosphate) and CK keep the concentrations of ATP and ADP
constant. Abbreviations: P;, inorganic phosphate; HK, hexokinase;
PHI, phosphoinositol, F26Bpase, fructose-2,6-biphosphatase; TPI,
triphosphoinositol; GAP, glutamate phosphate.

tances (CMC) gives quite closely the reaction pathway
shown in Figure 13.

With seven species there are (7 x 6)/2 binary correla-
tions. We retained only the ones shown in Figure 15 by a
procedure which ensures that each species is connected
to at least one other species, and only the largest correla-
tions are kept. Species 6 and 7 are in a single point: they
are completely correlated by conservation of mass. The
closer connection of species 1 to species 4, rather than 3,
depends on the rate coefficients in the S;-to-S, intercon-
version. The closeness of species 3 to species 6 and 7
indicates a point of control of 3 on 6 and 7. Such
information, available from correlation metric construc-
tions, is not available from the usual listings of elementary
reactions steps in a reaction mechanism.

For further testing of CMC, we chose another example
with two groups each having several futile cycles; to one
of these groups we assigned faster reactions than for the
other group (so that we have a two-time-scale reaction
mechanism). In this case the correlation diagram analo-
gous to Figure 15 showed a clear separation of the two
groups, and hence the existence of two time scales. It also
represented the reaction pathway of each group.

We have presented only the simplest analysis. There
are more sophisticated methods, such as multiple regres-
sion analysis, which can provide information about miss-
ing (or not measured) variables.'*

B. Experimental Test of CMC. To test the correlation
metric construction method,*® we chose a part of the
much studied glycolysis system shown in Figure 16, which
differs in some details from that in Figure 7. The system
is established in a nonequilibrium stationary state with a
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FIGURE 17. Time courses of measured concentration of the inputs
AMP and citrate in the experiments with the responses of the
concentrations of P; and the species F1,6BP, DHAP, F6P, G6P, and

F2,6BP. The dotted curves are the known input concentrations for
AMP and citrate.

constant inflow of glucose and buffer. Metabolites were
measured by capillary electrophoresis; the concentrations
of the enzymes were kept constant (see section I1.B); and
the ATP/ADP ratio was held constant. The two effectors
citrate-1 and AMP-1 were chosen for the species to be
perturbed randomly by arbitrary amounts. All the me-
tabolites listed were measured at regular intervals as, after
each perturbation, the system returned to its nonequilib-
rium stationary state. Typical measurements are shown
in Figure 17. A few of the correlations are given in Figure
18. The correlation of G6P with itself peaks at zero time
lag 7 and decays symmetrically with positive and negative
7, which shows that G6P is not in a stationary state during
this perturbation. The correlation of G6P with AMP-1 is
larger for positive than negative 7, which indicates that a
variation in AMP-1 precedes a variation in G6P. From such
information knowledge is obtained about the connectivity
of the species.

From the measured correlations we constructed, as
explained earlier, the multidimensional diagram (also
called the correlation metric construction) shown in
Figure 19A. Solid lines indicate negative correlations,
shaded lines positive correlations; arrows indicate the time
sequence of events: for example, an increase in AMP is
followed by a decrease in G6P and an increase in F1,6BP.
In Figure 19B the MDS diagram of Figure 19A is rear-
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FIGURE 18. Graphs of the lagged correlation functions offset to
distinguish individual correlation functions. Each successive cor-
relation function, starting with F2,6BP, is offset by 0.2 unit on the
correlation axis. For example, the maximum correlation ofG6P with
AMP-AMP-11occurs at significantly positive lags, implying that
variation in AMP-1 precedes variation in G6P.
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FIGURE 19. (A) 2D projection of the CMC diagram for the time series
shown in Figure 17. Each point represents the time series of a given
species. The closer two points are, the higher the correlation
between the respective time series. The black (gray) lines indicate
negative (positive) correlation between the respective species.
Arrows indicate temporal ordering among species based on the
lagged correlations between their time series. (B) Predicted reaction
pathway derived from the CMC diagram. Its correspondence to the
known mechanism is high.

ranged to show the usual reaction pathway determined
over many years of effort. The agreement with prior work
is excellent and shows the viability and utility of the CMC
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FIGURE 20. Diagram of the model. F and T are the reservoir species.
A and B are the cycle intermediates, interconverted by enzymes o
and S. Arrows indicate reactions, and knobs indicate regulation. The
kinetic parameters are given in Figure 1 of ref 17.

approach. The applicability of the pulse method and the
CMC approach is retained even if there are one or a few
missing species. Many other details are given in ref 16.

IV. Applications of Genetic Algorithm Methods
to Chemical Kinetics

A. Introduction. Genetic algorithms are one class of
mathematical techniques for finding stated optimal goals
or conditions in a given problem. The search for the
chosen optimum conditions are started randomly but then
directed toward the stated goals. The first tries, the first
generation, are judged in fitness to the stated goals; the
unfit are removed, the semi-fit are altered, and the fit are
retained for the next tries, the next generation, and so on,
until solutions are found that fulfill the stated goals
adequately. Alterations are made by “mutations” in one
or more parameters or variables, by crossover, and by
other methods reminiscent of biological evolution due to
genetic changes, hence the name genetic algorithms.

B. Selection of a Regulatory Structure for Flux Direc-
tion in a Simple Metabolic Model. Consider a schematic
mechanism (Figure 20) for the study of the selection, by
means of genetic algorithms, of a regulatory structure that
directs flux in a simple metabolic model.*” (For some
references on prior studies of optimization of metabolic
reaction networks, see refs 18 and 19.) F represents food
(glucose), T an energetic molecule (ATP), the k’s are rate
coefficients, A and B are intermediates, o and 3 are
enzymes, and circles denote the effector action of F and
T on the enzymes. We assign a task to this mechanism,
that of controlling the proper direction of the flux from F
to T (glycolysis), or the reverse (gluconeogenesis), as we
externally vary the concentrations of F and T. If the
concentration of F happens to be high and that of T low,
then we want the system to direct mass flux quickly from
F to T, and similarly for the reverse situation from T to F.

Let the rate equations for the temporal variation of A
and B be

A=KF+v;—k, A=,
B=K_,T+v,— kB~ (5)
For the effector control of F and T on the enzymes we

take a model of noncompetitive allosteric binding® (Figure
21) with the rate (for enzyme a)
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FIGURE 21. Mechanism of noncompetitive binding used to model
the interaction between an enzyme (E) and an effector (¢). In this
approximation, Ky is the dissociation constant of the enzyme—
substrate complex. The binding interaction between substrate and
enzyme is unperturbed by the presence of the effector. Formation
of product from the enzyme—substrate complex with effector bound
proceeds with the altered rate constant At
V A

max,
Vo = m_ﬁAprRm (6)

where the factors modifying the intrinsic Michaelis—
Menten rate expressions are

R = Koe T M€ @)
W Kye T Ryse€

The parameter K, is the dissociation constant for the
complex of enzyme o and the effector T or F, labeled ¢,
and r,, is the ratio of the catalytic rate coefficient for the
enzyme with and without effector bound, respectively. If
r is greater than unity, then the effector is an activator,
and if r is less than unity the effector is an inhibitor. We
see in Figure 20 that there are four effector interactions,
each with two parameters, one K and one r, for a total of
eight parameters. Hence there are eight parameters that
specify the regulatory response of the system for differing
conditions of the reservoirs F and T. Thus it is possible
for F or T to be selected a positive, or negative, or no
effector on the enzymes a and f.

To specify the optimization, we define a need state for
each reservoir which is positive if the concentration of that
reservoir falls below a given value and negative if it
exceeds another given value. A functional form for the
need state is chosen such that there is an acceptable
window of concentration around the target, within which
the numerical value of the need is close to zero, but at
the edges of which that value changes rapidly to a positive
or negative one. With the defined need states we wish to
optimize the function

f= §T(sz - ksz) + SF(kflA - le) ®)

or its time average

szg)’fdr 9)

where &g is the need state for F and & for T. The need
states of F and T are multiplied respectively by the net
flux of concentration into F and T. Hence if f is positive,
then the mechanism is directing the net flux in accordance
with the need states.



Deduction of Complex Reaction Mechanisms Ross

We have to begin with a chosen course of variation of
the concentration of F and T. Next we start with a set of
the eight parameters and integrate eqs 5—7 to evaluate J
in eq 9. In the use of a genetic algorithm we wish to vary
the eight parameters in a systematic way. Further details
are given in the Appendix of ref 17.

Five different courses of variations of the concentra-
tions of F and T were chosen to train 100 individuals
(systems) for proper flux control. The results are interest-
ing. In all but a few cases, the effect of F on the enzyme
a is one of activation, and that of T on the same enzyme
one of inhibition. For the enzyme f the reverse is true: T
is an activator and F an inhibitor. There are exceptions,
but then the networks perform not as well. This reciprocal
effect on the opposing branches of the cycle is the
regulatory pattern to be expected for efficient homeosta-
sis: the mechanism seeks to control the fluxes so as to
keep the concentrations of the reservoirs at the desired
levels. This result arises solely from the optimization
procedure of flux direction carried out by the genetic
algorithm.

No single network was found that performs best on all
the courses of changing environments. There is no single
winner; the winners are survivors that perform adequately,
but not necessarily outstandingly, from course to course.
The absence of a single winner prevents global dominance
and presents the opportunity for biological diversity.

C. Systematic Determination of a Reaction Mecha-
nism and Rate Coefficients. For an application of genetic
algorithms to this subject, see ref 20.

I thank all my co-workers cited in this review for their
contributions and friendship.
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